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1 Introduction and context

Figure 1: Interference graph provided by the Centre d’ELectronique de l’Armement for the

CALMA project (Combinatorial ALgorithms for Military Applications), taken from [1] (Pro-

vided under license: CC BY-NC 2.0)

Suppose we have a set V = {1, 2, . . . n} of nodes to which we wish to assign wireless fre-

quency channels, while ensuring that interference between channels is kept to a minimum – in

other words, that nearby channels do not have the same or similar frequencies. This “channel
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assignment problem” motivates a mathematical problem known as L(2,1)-labelling. First intro-

duced by [23] in 1980, the problem was presented by [39] as a graph-colouring problem in 1988.

In 1992, Griggs and Yeh [22] published a seminal study into the mathematics of the problem,

in which they focused on minimising the range of channels required, and also examined the

complexity of the allocation task. Since then, the problem has been extensively studied from

both these angles for various graph structures – see [9] for a comprehensive overview.

This essay will highlight key results regarding the range of channels needed and sketch their

proofs, before briefly examining complexity results, approximate solutions and the current state

of the art. We begin with a reminder of graph-theoretic preliminaries.

2 Rudiments of graph theory

(See any standard graph theory textbook for more information on the concepts in this section,

e.g. [7], available online).

We consider a connected, undirected graph G = (V,E); Figure 2 shows some common graph

families. The order of G is the number of vertices |V (G)| (often written as |V |); the degree of a

vertex v ∈ V is the number of edges meeting at v; the degree ∆ of G is the maximum degree of

any vertex ofG. The complement GC ofG has the same vertices V asG, and an edge between the

vertices vi, vj if and only if there is no edge vivj in G (Figure 3b). A subset Vsub ⊆ V generates

an induced subgraph of G with vertices Vsub and edges Esub = {vivj |vi, vj ∈ Vsub, vivj ∈ E}.
A path in a graph is a sequence of unique vertices linked by edges (Figure 4a). The distance

between two vertices is the number of edges in the shortest path between the vertices; the

diameter of G is the longest distance between any pair of vertices in G. A spanning tree of G

is a tree T (see Figure 2) with vertices V (T ) = V (G) and edges E(T ) ⊆ E(G) (Figure 5). Any

connected graph has at least one spanning tree. A graph is complete if there is an edge between

every pair of vertices; it is planar if it can be drawn on a plane without any edges crossing. We

limit ourselves to simple graphs, which have no loops (edges vi → vi) or duplicate edges.

Two concepts used in the proofs below relate to edge adjacency: a matching in G is a set M

(Figure 6) such that no vertex appears in M more than once; a maximum matching contains

the largest possible number of edges. A Hamilton path is a path visiting each vertex of G

exactly once (Figure 7). Not every graph has a Hamilton path; a graph with a Hamilton path

is Hamiltonian.
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(a) A cycle (b) A wheel

(c) A tree

Common graph families include:

a) The cycle.

b) A cycle plus a vertex is a wheel.

c) The tree: a graph in which any two vertices are connected by exactly one path.

d) Various product families: the product of G1 = (V1, E1) and G2 = (V2, E2) has vertices

Vp = V1 × V2; different types of product have different conditions defining the edges.

1 2

3 4

a

b

1a 2a

3a 4a

1b 2b

3b 4b

(d) A simple Cartesian product of graphs

Figure 2: Some common families of graph
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(a) G: A simple example graph
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(b) Complement of G

|V | = 8, ∆(G) = 4 (v2, v6, v8); ∆(GC) = 5 (v1).

1 2

3 4

5 6

7
8

(a) A path in G:

P = {1, 2, 3, 4, 8, 7, 6}
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P1 = {1, 2, 3, 4, 8, 7, 6, 5, 1};
P2 = {2, 6, 8, 4, 2}

(b) Cycles in G
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Figure 5: Spanning trees in G
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(a) A non-maximum matching in G
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(b) One of various maximum matchings

Figure 6: Matchings in G

A labelling of G is a mapping from V to labels subject to a set of constraints. The best-

known labelling problem is graph colouring, in which vertices must be assigned colours such that

no two neighbouring vertices have the same colour (Figure 8). The chromatic number χ(G) of

a graph G is the minimum number of colours needed to colour G.

An L(2,1)-labelling of G – also called a radiocolouring or radio colouring – is a mapping f

from V to integers {1, . . . n} such that |f(vj)− f(vi)| ≥ 2 if the vertices vj and vi are adjacent,

and |f(vj)−f(vi)| ≥ 1 if the vertices vj and vi have a common neighbour. The labelling number

associated with a given labelling f 7→ {1, . . . , n} is n; the span λ of the graph is the minimum

labelling number over all valid labellings f for that graph1.

1Caveat lector: although this definition seems natural as n corresponds to the number of labels needed if there

are no gaps, the literature is not consistent: the labelling number is also commonly defined as max(f)−min(f),

i.e. n− 1 above (or n using labels {0, . . . , n}).
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Figure 7: Hamilton paths in G
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(a) A 4-colouring of G
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(b) A 3-colouring of G

Figure 8: Colourings of G

o x o

Consider an L(2,1)-labelling of this graph: the two ‘o’ nodes must have distinct labels. If ‘x’

has label i, and one ‘o’ node has label i− 2, then the other ‘o’ node must have label ≤ i− 3 or

≥ i+ 2. The minimum labelling number is then λ = |i− i− 3|+ 1 = 4, even though there are

only three nodes.

1 4 2

Figure 9: Simple labelling illustration
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(b)

The difference between labelling number and number of labels: (a) uses a total of 6 labels; the

labelling number is 8 and channels 2,7 are unused; in (b), the labelling number is 7 and every

channel is used. It is not possible to achieve a labelling number < 8 using just 6 labels for this

graph.

Figure 10: L(2,1)-labellings

It is L(2,1)-labelling that will be our focus in this essay. The next section outlines what

mathematicians currently understand about this problem and where research may be headed

in the next decade.

3 Algorithms and bounds

Given a graph G = (V,E) to which we wish to assign an L(2,1)-labelling, there are a number

of invariants that may be of interest (see e.g. [30]). In traditional graph colouring, we want

to minimise the number of colours used. For an L(2,1)-labelling, the focus is generally on

minimising the range of labels, i.e. the labelling number, rather than the number of labels (see

Figures 9, 10). We might also be interested in efficient ways to assign the labels.

In this section, we discuss the research into upper bounds for the span λ as a function of

∆(G). Without getting too deep into details, we sketch the ideas of some key proofs to obtain an

insight into the problem. We then briefly outline the state of the art regarding the complexity

of L(2,1)-labelling, and allude to compromise solutions using heuristics.
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The Petersen graph has ∆ = 3, so ∆2 = 9, and is known to have λ = 10. An example

L(2,1)-labelling using 10 labels (given by [4]) is shown.

Figure 11: The Petersen graph

3.1 A bound on λ

It is clear intuitively that the degree ∆(G) must be relevant to the span of G. Unlike in the

classical colouring problem, every neighbour of a vertex v must have a different label, and so as

the number of neighbours of v increases, the number of labels required in the neighbourhood

of v likewise increases. In their 1992 paper, [22] prove that λ can be directly related to ∆ and

give a general upper bound on λ of ∆2 + 2∆ + 1. They furthermore conjecture that a better

bound of λ ≤ ∆2 + 1 exists. Certain classes of graph, such as the Petersen graph (Figure 11)

are known to have λ = ∆2 + 1 [4], so this would be the minimum possible general bound. [22]

also present tighter bounds for certain families of graph, including:

• Any path Pn with n vertices (n ≥ 5) has λ(Pn) = 5.

• Any wheel Wn has λ(Wn) = n+ 2.

• Any tree T with degree ∆ has λ(T ) = ∆ + 2 or λ(T ) = ∆ + 3.

• For any k-colourable graph, i.e. χ(G) = k, λ(G) ≤ |V (G)|+ k − 1.

• Any graph with diameter 2 has λ(G) ≤ ∆2.

λ has been established for other special categories of graph over the years. We will look

briefly next at one in particular: for a triangular lattice L, λ(L) = 9 [44]. This graph is not
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hard to label, but the triangular lattice is particularly relevant to the motivating frequency

assignment problem, and the proof for λ(L) will serve a simple example before we embark on

the general case.

3.2 λ for a triangular lattice

Figure 12: A triangular lattice

The triangular lattice (Figure 12) is of practical interest as it represents an efficient way

to distribute transmitters with circular (≈ hexagonal) coverage evenly across a geographical

area, represented on a plane. The infinite lattice has a repeating pattern, and can be labelled

by considering the small finite subgraph H shown in Figure 13 (due to [44]). To do this, we

assign the vertices coordinates i, j as shown in Figure 14a. Then it is easy to verify with

simple arithmetic that the function f : V → 0, 1, . . . , 8 defined by f(i, j) = (−3i + 2j) mod 9

(Figure 14b) is an L(2,1)-labelling and so λ ≤ 9. It is also easy to verify that the subgraph H

cannot be labelled with any fewer labels, and so λ = 9.

3.3 General graphs

The above list of graph families for which bounds on λ have been established is by no means ex-

haustive. Another important category that has been extensively studied covers various families
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i = 0

j = 0

Figure 13: Subgraph H of a triangular lattice – the shaded nodes

i = 0

j = 0

2,1

2,21,20,2

1,10,1

1,0 2,0 3,0

(a) Subgraph with coordinates

5

714

82

6 3 0

4 1 7 4

6

82

4

f(i, j) = −3i+ 2j mod 9

(b) Labelled subgraph

Figure 14: An L(2,1)-labelling for the triangular lattice
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of combined graphs: products [34] [33] [28] of certain types of graph, amalgamations – graphs

created by identifying certain vertices of two graphs [3] [31]2, intersections [13]. However, the

conjecture of Griggs and Yeh that λ ≤ ∆2 + 1 for any simple graph remains unproven.

An initial bound on λ for an arbitrary graph is given by a greedy algorithm [22]: simply

assign each vertex in turn (in any order) the smallest label compatible with the already-labelled

vertices. A vertex v has at most ∆ immediate neighbours, which each rule out three labels

(their own label ln, ln − 1 and ln + 1). Each of these neighbours has at most ∆− 1 neighbours

distinct from v, i.e. there are at most ∆(∆− 1) = ∆2−∆ vertices whose label must be distinct

from lv. In the worst case, therefore, there may be (∆2 − ∆) + (3∆) = ∆2 + 2∆ labels ruled

out, and thus after labelling v we may have a labelling number of ∆2 + 2∆ + 1.

By 2005, this greedy bound had been whittled down to ∆2 + ∆− 1 by Gonçalves [21], who

reached back to 1996 and refined an algorithm due to [11] to improve on the 2003 bound of [35].

The proof in [21] is based on a constructive algorithm. The key to the technique is to choose a

smart ordering in which to label the vertices, based on a spanning tree of G.

Another step forward followed in 2008, when [26] succeeded in proving the Griggs and Yeh

conjecture for “sufficiently large” ∆, using probabilistic tools. Their result is framed as follows:

(Havet et al. [26])

There is some ∆c such that for every graph G of maximum degree ∆ ≥ ∆c:

λ(G) ≤ ∆2 + 1

.A corollary of this result is that λ(G) ≤ ∆2 + C for some absolute constant C [25].

The proof is based on a random trial approach to labelling, subject to certain conditions.

Simplifying somewhat: suppose that Ex is the “bad” event that, in some random assignment,

the vertex vx does not have a valid label. The Lovász local lemma states that under certain

conditions (in particular, each such Ex should depend mainly on a limited number of other

“local” variables, not on the overall size of the assignment), there will be a positive (> 0)

probability that no such events will occur, i.e. that the random assignment will be a valid

labelling. This lemma has been used for other graph-colouring proofs (see e.g. [16] [20]), but

its application in [26] is complex and relies on additional probabilistic results: the details are

beyond the scope of this essay.

However, we will sketch an outline of the setup. The first step is to identify the square G2

of G: this graph has the same vertices as G but additional edges between any two nodes that

2NB: The precise definition of amalgamation used in these papers is the authors’ own.
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(a) Our example graph G
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(b) G2 – new edges are shown as dashed

Figure 15: G2 for our simple example graph

share a neighbour in G (see Figure 15). The maximum degree of any vertex in G2 is thus the

familiar value ∆(∆− 1) = ∆2 −∆.

Next, [26] use a decomposition of the vertices of G2 into disjoint sets with certain properties

– for example, all but one of the sets must have between ∆2 − 8000∆ and ∆2 + 4000∆ vertices

– to construct three disjoint sets of vertices V1, V2, V3 which are labelled in turn. At each

stage, the Lovász local lemma is applied (in conjunction with other probabilistic machinery) to

prove that a suitable labelling must exist (the labelling for V1 and V2 is subject to additional

constraints designed to ensure that the conditions of the lemma are met as the labelling is

extended from V1 to V1 ∪ V2 and then to the whole graph).

The exact requirements for the decomposition and sub-labellings are designed to ensure

that the probability calculations work out, and involve considerable counting of neighbours and

edges. The large numbers used rule out a proper worked example – for one thing, over 1000

edges are needed for any decomposition satisfying the required properties. However, to get a feel

for the procedure, Appendix A steps through the main parts of the process to label an example

graph, albeit with an arbitrary decomposition. Highlights to note: the first set of vertices V1

is derived from G2, but disconnected pairs of vertices in each local decomposition are merged

and labelled as one. Other than these merged pairs, only the most-connected vertices from G
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are retained in this first derived graph, so the strategy has echoes of a greedy approach.

Although [26] certainly represents a step towards proving the Griggs and Yeh conjecture,

the proof is complex and requires somewhat opaque constructions to make the numbers work;

furthermore, the suggested value of ∆ ≈ 1069 is outlandishly large.

Working “from the other direction”, in 2015 Franks [18] succeeded in proving the conjecture

for graphs of “small order”; namely,

(Franks [18])

λ(G) ≤ ∆2 + 1 if

|V | ≤
(⌊

∆

2

⌋
+ 1

)
(∆2 −∆ + 1)− 1

.

This is actually a corollary of [18]’s main theorem, which states that given some L ≥ ∆2 + 1,

λ(G) ≤ L if

|V | ≤ (L−∆)

(⌊
L− 1

2∆

⌋
+ 1

)
− 1. (1)

The corollary follows by choosing L = ∆2 + 1. The proof is anchored in a series of graph

transformations which generate a valid labelling, as follows:

1

5 6

2

3 4

7 8

Cblue = {6}

Ccyan = {2}

Cmagenta = {3}

Cpale blue = {4}

Cred = {5}

Cgreen = {8}

Cyellow = {1, 7}

Figure 16: A 7-colouring of G2

Given a graph G, Franks begins, like [26] above, by computing the square graph G2 (Fig-

ure 15). However, Franks’ next step is to find a standard colouring of G2. Now let Ci be the
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set of vertices coloured with colour i (the Ci thus partition V ). Figure 16 illustrates this on our

example graph. Next, Franks introduces a novel concept: the square colour graph G has the Ci

as vertices and an edge CiCj if the induced subgraph of G with vertices Ci ∪ Cj contains an

edge of G (Figure 17). Finally, GC is the complement of G (Figure 17b).

Franks then shows that if GC is Hamiltonian with Hamilton path P = {p0, p1, . . . , pn}, an

L(2,1)-labelling for the original G can be constructed (Figure 18a) by giving the vertex v ∈ G
the label i if pi ∈ P contains v (recall the pi are simply an ordering of the Ci, which partition

V ): since C is a colouring of G2, vertices in different sets Ci, Cj are exactly those whose labels

must differ by at least one. If vi and vj are neighbours in G, there will also be an edge CiCj

in G and accordingly no edge in GC , so Ci and Cj cannot be adjacent in P ; the corresponding

labels must therefore differ by at least two. Figure 18b shows the corresponding labelling of our

example graph.

Since this construction relies on the existence of a Hamilton path in GC , the proof [18]

shows (using a well-known result due to Pósa; we omit the details) that such a path always

exists under Condition (1), provided the k-colouring of G2 is equitable (i.e. the sizes of the Ci as

defined above differ by at most one – our 7-colouring in Figure 16 is equitable with |Ci| ∈ {1, 2}).
A result of Szemerédi-Hajnal states that if the degree of a graph G ≤ L for some L, then G

can be equitably coloured with L + 1 colours; since the degree of G2 ≤ ∆2 −∆, an equitable

colouring of G2 with L = ∆2 + 1 ≥ ∆2 −∆ colours must exist, and this completes the proof.

A comparison between the rather involved proof [26] for “sufficiently large” graphs and

the lean proof [18] for “sufficiently small” graphs is interesting: both start from G2, but [18]

subsequently transforms the labelling stage to a standard colouring problem – albeit with the

“equitable” requirement. While [26] use the complement of G2 to identify “locally matched”

vertices, [18] only takes the complement at the square colour graph stage. Indeed, by contrast

with the elegant “square colour graph”, the tools used by [26] are rather heavy machinery.

Another difference is that while the proof of [18] yields an algorithm for assigning the labels

(more on this below), [26] is merely an existence proof: the Lovász local lemma does not provide

a constructive solution approach. In the next section we examine further this issue of assigning

the labels.
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Cblue = {6}

Ccyan = {2}

Cmagenta = {3}

Cpale blue = {4}

Cred = {5}

Cgreen = {8}

Cyellow = {1, 7}

Cb,c = {6, 2} E = {v6v2}

Cb,m = {6, 3} E = {}

Cb,p = {6, 4} E = {}

Cb,r = {6, 5} E = {v6v5}

Cb,g = {6, 8} E = {v6v8}

Cb,y = {1, 6, 7} E = {v6v7}

Cc,m = {2, 3} E = {v2v3}

Cc,p = {2, 4} E = {v2v4}

Cc,r = {2, 5} E = {}

Cc,g = {2, 8} E = {}

Cc,y = {1, 2, 7} E = {v1v2}

Cm,p = {3, 4} E = {v3v4}

Cm,r = {3, 5} E = {}

Cm,g = {3, 8} E = {}

Cm,y = {1, 3, 7} E = {v3v7}

Cp,r = {4, 5} E = {}

Cp,g = {4, 8} E = {v4v8}

Cp,y = {1, 4, 7} E = {}

Cr,g = {5, 8} E = {v5v8}

Cr,y = {1, 5, 7} E = {v1v5}

Cg,y = {1, 7, 8} E = {v7v8}

Edges in G correspond to the (13) non-empty sets:

CbCc, CbCr, CbCg, CbCy, CcCm, CcCp, CcCy, CmCp, CmCy, CpCg, CrCg, CrCy, CgCy

Cr

Cb Cg

CyCc

Cp Cm

(a) Square colour graph G

Cr

Cb Cg

CyCc

Cp Cm

(b) GC (solid edges)

Figure 17: Square colour graph G and its complement GC for our 7-colouring of G
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Cr

Cb Cg

CyCc

Cp Cm

P = Cy → Cp →
Cr → Cc → Cg →
Cm → Cb

(a) Hamilton path in GC

p0 p1 p2 p3 p4 p5 p6

Cy Cp Cr Cc Cg Cm Cb

This Hamilton path induces the following L(2,1)-labelling:

vertex v 1 2 3 4 5 6 7 8

v ∈ Ci Cy Cc Cm Cp Cr Cb Cy Cg

j : Pj = Ci 0 3 5 1 2 6 0 4

1 2

3 4

5 6

7
8

0 3

5 1

2 6

0
4

Notice that this is distinct from the

labelling in Figure 10b, although the

pair of vertices that share a label is

the same.

(b) G labelled using Franks’ method [18]

Figure 18: Hamilton path in GC and the induced labelling of G
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3.4 Complexity and algorithms

The complexity, or O-number, of a problem is an order of magnitude for the number of steps

it takes to find a solution, as a function of the problem parameters – in this case, |V (G)| and

|E(G)|. For example, the algorithm in §3.2 for the triangular lattice is linear in |V |, since we

require one step per vertex. Efficient algorithms have been found for other specific types of

graph [6], including a linear time algorithm for trees [24]. The most time-consuming stage of

the square colour graph technique in [18] is finding an equitable k-colouring of the square graph;

it is known that this can be done in O(k|V |2) time [32]; subsequently finding a Hamilton path

can also be done in polynomial time under [18]’s conditions [8], so there is a polynomial-time

algorithm for graphs satisfying Condition (1).

In general, however, the L(2,1)-labelling problem is known to be NP-complete [36]: it is

possible to check in polynomial time whether a candidate labelling f of a graph G is an L(2,1)-

labelling, but finding a labelling may require exponential time. The brute force approach takes

some O(k|V |) steps: simply test all possible candidate labellings using labels {1, . . . , k}. Since

each of the |V | vertices can be assigned any one of the k labels, there are k|V | candidates, each

requiring polynomial time to check. Furthermore, to find an optimum k, we would have to

start with an implausibly low value for k, exhaust all possible assignments, increment k by 1,

and repeat until hitting on a solution. Indeed, [17] show that for a general graph, and k ≤ k0

for some k0, deciding whether there is an L(2,1)-labelling of G using k labels is itself an NP-

complete problem. Although this means that any exact labelling algorithm for an arbitrary

graph must be exponential, i.e. O(cn), we can do much better than the c = k of the brute force

approach. [27] explore the problem and bring c to a little above 3. This was reduced again in

2013 to the current record of c = 2.6488 [29]; we are not aware of any further breakthroughs in

the subsequent nine years.

Suppose, however, that we relax the requirement for the “best” labelling, and simply look

for “good” solutions. A heuristic algorithm seeks “near-optimal” solutions to an otherwise

intractable problem. A simple heuristic for L(2,1)-labelling might assign labels greedily to

vertices ordered by decreasing degree [38]. Recall that the proof in [26] relied on the Lovász

local lemma, a result using the fact that dependence between labels is largely local. Good results

are often found by combining local optimisation with an element of randomisation, frequently

imitating natural processes – for example, genetic algorithms mimic “survival of the fittest”;

artificial bee colonies exploit “swarm intelligence” [10]. Tools which have been explored for
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L(2,1)-labelling include genetic algorithms [40] [14], simulated annealing [37] and self-organising

systems [15]. [1] has an overview. These algorithms can only ever be as good as the heuristic

chosen; in other words, the more we can learn and prove about the relationships between

substructures of a graph and locally good labellings, the better we can make our approximate

solutions.

Many open questions remain: What is the best upper bound we can achieve for the labelling

number while guaranteeing, say, polynomial time? What are the most effective heuristics? And

what is the best way to assign frequencies in a real network – such as Figure 1 – today? In

the next section, we revisit the practical problem that prompted the mathematical exploration

before summarising the results covered in this essay and highlighting key open problems.

4 Perspectives and conclusion

4.1 Channel assignment in the digital age

The L(2,1)-labelling problem was initially motivated by a real-world problem posed in the 1980s.

Forty years on, the core problem of assigning frequencies with minimum interference remains

current, but communication technology has changed. In today’s mobile world, frequency as-

signments must often be carried out dynamically, rapidly, and adaptively for moving devices [1]

[5]. The channel assignment problem has thus largely become the domain of computer science,

fast approximate algorithms, hybrid approaches and parallel computing [12] [41] [15] [1].

Meanwhile, mathematicians continue to study L(2,1)-labelling for its theoretical interest,

seeking new insights, new tools, and new ways of looking at the problem that could lead to

a final proof of the Griggs and Yeh conjecture. It is fascinating to realise how many different

mathematical tools have been brought to bear on this problem. As well as classical graph-

theoretic concepts, we find probability lemmas [26], coding theory (an approach for labelling

n-cubes introduced by [42] and exploited by [19]), etc. What seams remain yet to be mined? A

recent preprint [2] concerning the Lovász local lemma may harbour possibilities for improving on

[26]: the authors of [2] introduce a powerful hierarchy of related lemmata that can be explored

with relatively little computational effort. Indeed, perhaps modern computing power could have

more roles to play here? The map-colouring theorem (“every planar graph can be coloured using

no more than four colours”) was proved by breaking down the infinity of possible graphs into

a few thousand configurations, which were checked by computer [43]. Could something similar

be done for L(2,1)-labelling? In the next section, we sum up the current state of the art and
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highlight some open problems.

4.2 Summary and open problems

We introduced L(2,1)-labelling as a graph-colouring problem motivated by a need to assign

radio channels to nodes in a geographical network. We defined the span λ of a graph as a

key parameter of interest and outlined the current state of the art regarding an upper bound

for λ in a few specific families of graph and in general graphs. We then looked briefly at the

complexity of finding a good L(2,1)-labelling and alluded to heuristic algorithms. We noted that

the intersection of different areas of mathematics makes L(2,1)-labelling particularly interesting

and suggested that there may be new insights to be found by using tools from other fields to

illuminate the problem from fresh angles.

Certainly L(2,1)-labelling still harbours plenty of open problems: many concern bounds on λ

for specific categories of graph. Furthermore, although ∆2+1 is known to be a tight bound on λ

for certain categories of graph such as the Petersen graph, it is not known how many such graphs

exist: categorising all graphs with λ ≥ ∆2 + 1 remains an open problem. Other open problems

relate to the complexity: efficiently determining the span λ of a given graph, efficiently finding

a L(2,1)-labelling with a given labelling number ≥ λ, and finding good approximate solutions.

The most tantalising open problem, however, must remain the 1992 conjecture of Griggs and

Yeh that λ ≤ ∆2 + 1.
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A The Havet et al. construction

A worked example of the [26] labelling process, using the graph in Figure 19. The setup

requires a decomposition V = D0, . . . , Dn, S. We take D0 = {1, . . . , 8}, D1 = {9, . . . , 13},
D2 = {14, . . . , 20}, D3 = {21, 22, 23} and leave S empty for this example. As discussed in the

text, this decomposition does not satisfy the required properties; we merely wish to get a feel

for the process.
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Figure 19: Extended example graph
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Figure 20: G2 for our extended example: new edges are shown as dotted

Figure 21 Havet et al. construction, first stage

The first stage involves the individual Di:

• Let Hi be the subgraph of G2 induced by Di (Figure 22a).

• Take Hi, the complement of Hi (Figure 22b).

• Let Mi be a maximum matching of Hi (Figure 23a). Make a note of the Mi, which will

be used again later.

• Let Ki be Di \ V (Mi) (Figure 23b) (these are likely to be well-connected vertices in Hi).

• Let Bi be vertices in Ki with more than ∆5/4 neighbours outside Hi in G2.

• Let Ai = Ki \ Bi (Figure 23b) (i.e. subtract vertices that are highly connected outside

this subgraph).
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Figure 21 Havet et al. construction, second stage

• Next, take the union of the Ai and construct two subgraphs with the following vertex sets:

V1 = V (G) \
⋃
i

Ai;

V2 =
⋃
i

Ai

V1 is thus the Ki∪Bi, i.e. the highly connected vertices, and will be labelled first, subject

to some additional conditions to ensure that we can extend the labelling to V2. Finally,

we will label the remaining vertices S of the original decomposition.

• To label V1, derive new graphs G∗ and G2∗ as follows:

– Construct new vertices from the Mi by replacing each matched pair of vertices vj , vk

with a single new vertex Cjk (Figure 24) whose neighbours are the neighbours of vj

and of vk, so the maximum degree of the new graph G2∗ is ≤ 2(∆2 −∆) (since G2

may have degree ∆2 −∆).

– Add additional edges between particularly highly connected vertices, subject to cer-

tain conditions (for G2∗ only). The requirement for “highly connected” here is

> ∆9/5, i.e. close to the maximum ∆2 −∆ (the Ci are not candidates for the addi-

tional edges).

– Remove the vertices of the Ai – this leaves us with the Cjk and various highly

connected vertices (Figure 25).

• Now find a labelling such that vertices adjacent in G2∗ have distinct labels, and vertices

adjacent in G have label distance ≥ 2. (Note that since we added “extra” edges to G2∗,

this is nearly, but not precisely, an L(2,1)-labelling of G∗).

• Extend the labelling to the subgraph of G induced by V1 by assigning each pair of matched

vertices vi, vj the label of Cij in G∗. Since these matched vertices correspond to edges in

the complement of G2, they cannot be neighbours in G2, so the labelling will be valid.

• We omit details of further extension of the colouring to the full graph, which is subject

to additional constraints required for the probabilistic element of the proof. Figures 27a

and 27b show a labelling of V1 for our example and an extension to the rest of G.
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(a) Subgraphs H0, H1, H2, H3 (dashed lines are edges from G2)
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(b) Complements H0, H1, H2, H3

Figure 22: The Hi and Hi
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(a) Maximum matchings in the Hi

Ki := Di − V (Mi)

Bi := vertices in Ki with > 75/4 = 12 or more neighbours in G2 outside Hi.

K0 = {2, 4, 6, 8}. None of these has more than 11 neighbours outside D0. ⇒ B0 = {}.
K1 = {9, 10, 11, 12, 13}; of these, 9 has the whole of D1 as neighbours, as well as 14, 15, 16, 17

= 12 > 11 neighbours outside D2. B1 = {9}.
K2 = {16}. Vertex 16 has 8+5+3 = 15 neighbours. ⇒ B2 = {16}.
K3 = {21, 22, 23}; B3 is empty.

Now we set Ai = Ki \Bi: A0 = {2, 4, 6, 8}, A1 = {10, 11, 12, 13}, A2 = {}, A3 = {21, 22, 23}
⋃
Ai

= {2, 4, 6, 8, 10, 11, 12, 13, 21, 22, 23}.

(b) Constructing the Ai

Figure 23: The Havet process: from Hi to
⋃

Ai
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• V1 = V \⋃Ai = {1, 3, 5, 7, 9, 14, 15, 16, 17, 18, 19, 20}

• V2 =
⋃
Ai = {2, 4, 6, 8, 10, 11, 12, 13, 21, 22, 23}

C0 = {v1v7, v3v5};
C1 = {};
C2 = {v18v15, v17v20, v14v19}; C3 = {}
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Figure 24: G2 with the Mi contracted
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V ∗ =V (G)− {1, 3, 5, 7, 14, 15, 16, 18, 19, 20}+
⋃
i

Ci

={2, 4, 6, 8, 9, 10, 11, 12, 13, 16, 21, 22, 23}+
⋃
i

Ci

(nothing has > ∆9/5 = 34 neighbours → no new edges)

Now we subtract the vertices of
⋃

iAi, leaving V ∗ = {9, 17, v1v7, v3v5, v18v15, v17v20, v14v19}:
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99

16
14-19

17-20

15-18

(a) G2∗

1-7

3-5

99

16
14-19

17-20

15-18

(b) G∗

Figure 25: The derived graphs G∗ and G2∗
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Red lines represent pairs of vertices that

must be labelled with distance ≥ 2.

(a) Labelling of G2∗
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(b) Labelling expanded onto G(V1)

Figure 26: Labelling the vertices V1
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(a) G with the labels from Figure 26b inserted

1 9

3 5

3 7

1
10 22

4

6

7 8

6

6

35

1

3 6

1

6

7

8

(b) Labelling of Figure 27a extended into an L(2,1)-labelling for G with labelling number 10

Figure 27: Final labelling for G
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